Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Nanostructured alkali-metal vapor cells


Renger,  Jan
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;


Sandoghdar,  Vahid
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich Alexander University Erlangen-Nuremberg, D-91058 Erlangen, Germany;
Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Cutler, T. F., Hamlyn, W. J., Renger, J., Whittaker, K. A., Pizzey, D., Hughes, I. G., et al. (2020). Nanostructured alkali-metal vapor cells. Physical Review Applied, Editors' Suggestion, 14: 034054. doi:10.1103/PhysRevApplied.14.034054.

Cite as: http://hdl.handle.net/21.11116/0000-0006-4348-E
Atom-light interactions in nano-scale systems hold great promise for novel technologies based on integrated emitters and optical modes. We present the design architecture, construction method, and characterization of an all-glass alkali-metal vapor cell with nanometer-scale internal structure. Our cell has a glue-free design which allows versatile optical access, in particular with high numerical aperture optics. By performing spectroscopy in different illumination and detection schemes, we investigate atomic densities and velocity distributions in various nanoscopic landscapes. We apply a two-photon excitation scheme to atoms confined in one dimension within our cells, achieving a resonance line-width of 32 MHz in a counter-propagating geometry, and 57.5 MHz in a co-propagating geometry. Both of these are considerably narrower than the Doppler width (GHz), and are limited by transit time broadening and velocity selection. We also demonstrate sub-Doppler line-widths for atoms confined in two dimensions to micron-sized channels. Furthermore, we illustrate control over vapor density within our cells through nano-scale confinement alone, which could offer a scalable route towards room-temperature devices with single atoms within an interaction volume. Our design offers a robust platform for miniaturized devices that could easily be combined with integrated photonic circuits.