English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Megacity development and the demise of coastal coral communities: Evidence from coral skeleton δ15N records in the Pearl River estuary

MPS-Authors
/persons/resource/persons209287

Duprey,  Nicolas N.
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons204189

Vonhof,  Hubert B.
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100899

Crutzen,  Paul J.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons187781

Haug,  Gerald H.
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons192213

Martinez-Garcia,  Alfredo
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Duprey, N. N., Wang, T. X., Kim, T., Cybulski, J. D., Vonhof, H. B., Crutzen, P. J., et al. (2020). Megacity development and the demise of coastal coral communities: Evidence from coral skeleton δ15N records in the Pearl River estuary. Global Change Biology, 26(3), 1338-1353. doi:10.1111/gcb.14923.


Cite as: http://hdl.handle.net/21.11116/0000-0006-48E5-7
Abstract
Historical coral skeleton (CS) δ18O and δ15N records were produced from samples recovered from sedimentary deposits, held in natural history museum collections, and cored into modern coral heads. These records were used to assess the influence of global warming and regional eutrophication, respectively, on the decline of coastal coral communities following the development of the Pearl River Delta (PRD) megacity, China. We find that, until 2007, ocean warming was not a major threat to coral communities in the Pearl River estuary; instead, nitrogen (N) inputs dominated impacts. The high but stable CS-δ15N values (9‰-12‰ vs. air) observed from the mid-Holocene until 1980 indicate that soil and stream denitrification reduced and modulated the hydrologic inputs of N, blunting the rise in coastal N sources during the early phase of the Pearl River estuary urbanization. However, an unprecedented CS-δ15N peak was observed from 1987 to 1993 (>13‰ vs. air), concomitant to an increase of NH4+ concentration, consistent with the rapid Pearl River estuary urbanization as the main cause for this eutrophication event. We suggest that widespread discharge of domestic sewage entered directly into the estuary, preventing removal by natural denitrification hotspots. We argue that this event caused the dramatic decline of the Pearl River estuary coral communities reported from 1980 to 2000. Subsequently, the coral record shows that the implementation of improved wastewater management policies succeeded in bringing down both CS-δ15N and NH4+ concentrations in the early 2000s. This study points to the potential importance of eutrophication over ocean warming in coral decline along urbanized coastlines and in particular in the vicinity of megacities.