Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Identifying and Addressing Nonstationary LISA Noise


Gair,  Jonathan
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

(Preprint), 3MB

Supplementary Material (public)
There is no public supplementary material available

Edwards, M. C., Maturana-Russel, P., Meyer, R., Gair, J., Korsakova, N., & Christensen, N. (2020). Identifying and Addressing Nonstationary LISA Noise. Physical Review D, 102: 084062. doi:10.1103/PhysRevD.102.084062.

Cite as: http://hdl.handle.net/21.11116/0000-0006-51D2-1
We anticipate noise from the Laser Interferometer Space Antenna (LISA) will exhibit nonstationarities throughout the duration of its mission due to factors such as antenna repointing, cyclostationarities from spacecraft motion, and glitches as highlighted by LISA Pathfinder. In this paper, we use a surrogate data approach to test the stationarity of a time series, with the goal of identifying noise nonstationarities in the future LISA mission. This will be necessary for determining how often the LISA noise power spectral density (PSD) will need to be updated for parameter estimation routines. We conduct a thorough simulation study illustrating the power/size of various versions of the hypothesis tests, and then apply these approaches to differential acceleration measurements from LISA Pathfinder. We also develop a data analysis strategy for addressing nonstationarities in the LISA PSD, where we update the noise PSD over time, while simultaneously conducting parameter estimation, with a focus on planned data gaps. We show that assuming stationarity when noise is nonstationary leads to systematic biases and large posterior variances in parameter estimates for galactic white dwarf binary gravitational wave signals.