English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neurodiagnostics in sports: Investigating the athlete's brain to augment performance and sport-specific skills

MPS-Authors

Seidel-Marzi,  Oliver
Institute of General Kinesiology and Athletics Training, University of Leipzig, Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19935

Ragert,  Patrick
Institute of General Kinesiology and Athletics Training, University of Leipzig, Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Seidel_2020.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Seidel-Marzi, O., & Ragert, P. (2020). Neurodiagnostics in sports: Investigating the athlete's brain to augment performance and sport-specific skills. Frontiers in Human Neuroscience, 14: 133. doi:10.3389/fnhum.2020.00133.


Cite as: https://hdl.handle.net/21.11116/0000-0006-52B7-F
Abstract
Enhancing performance levels of athletes during training and competition is a desired goal in sports. Quantifying training success is typically accompanied by performance diagnostics including the assessment of sports-relevant behavioral and physiological parameters. Even though optimal brain processing is a key factor for augmented motor performance and skill learning, neurodiagnostics is typically not implemented in performance diagnostics of athletes. We propose, that neurodiagnostics via non-invasive brain imaging techniques such as functional near-infrared spectroscopy (fNIRS) will offer novel perspectives to quantify training-induced neuroplasticity and its relation to motor behavior. A better understanding of such a brain-behavior relationship during the execution of sport-specific movements might help to guide training processes and to optimize training outcomes. Furthermore, targeted non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) might help to further enhance training outcomes by modulating brain areas that show training-induced neuroplasticity. However, we strongly suggest that ethical aspects in the use of non-invasive brain stimulation during training and/or competition need to be addressed before neuromodulation can be considered as a performance enhancer in sports.