English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages

MPS-Authors
/persons/resource/persons201374

O'Sullivan,  David
Department Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons201435

Pearce,  Edward J.
Department Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons201431

Pearce,  Erika L.
Department Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Huang et al..pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Huang, S.-C.-C., Everts, B., Ivanova, Y., O'Sullivan, D., Nascimento, M., Smith, A. M., et al. (2014). Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nature Immunology, 15, 846-855. doi:10.1038/ni.2956.


Cite as: https://hdl.handle.net/21.11116/0000-0006-614B-9
Abstract
Alternative (M2) activation of macrophages driven via the α-chain of the receptor for interleukin 4 (IL-4Rα) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of the fatty acids that support this metabolic program has not been clear. We found that the uptake of triacylglycerol substrates via the scavenger receptor CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation, enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth and blocked protective responses to this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation.