English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Development of a Non-Targeted Method to Study Petroleum Polyaromatic Hydrocarbons in Soil by Ultrahigh Resolution Mass Spectrometry Using Multiple Ionization Methods

MPS-Authors
/persons/resource/persons217736

Luo,  Ruoji
Service Department Schrader (MS), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58974

Schrader,  Wolfgang
Service Department Schrader (MS), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Luo, R., & Schrader, W. (2022). Development of a Non-Targeted Method to Study Petroleum Polyaromatic Hydrocarbons in Soil by Ultrahigh Resolution Mass Spectrometry Using Multiple Ionization Methods. Polycyclic Aromatic Compounds, 42(2), 643-658. doi:10.1080/10406638.2020.1748665.


Cite as: https://hdl.handle.net/21.11116/0000-0008-C351-0
Abstract
A non-targeted method for analyzing petroleum hydrocarbons in soil was established by extracting a wide range of PAC compounds using a model system. Here, sand was spiked with a heavy crude oil, which simulated a hydrocarbon contaminated soil of low soil organic matter (SOM). Soxhlet and supercritical fluid extraction (SFE) was optimized for PAXHs analysis in soil. A concept of using multidimensional ionization for ultrahigh resolution mass spectrometry was employed for detection using electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photo ionization (APPI) for the analysis of polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic heterocycles. Fourier transform mass spectrometry (FT-MS) with its ultrahigh mass resolution and high mass accuracy enables an unambiguous assignment of the detected ions obtained from different ionization methods, which provides a secure and comprehensive view of contaminants in soil on a molecular level. Over 95% of the spiked crude oil could be recovered by Soxhlet extraction using toluene, dichloromethane and acetone:n-hexane (1:1, v:v). In comparison, when using SFE with supercritical CO2 the recovery was only about 50% but showed more polar compounds. Detailed analyses showed that besides 16 PAHs, a wide range with more than 10,000 PAXHs could also be successfully extracted.