English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Detection of metastable electronic states by Penning trap mass spectrometry

MPS-Authors
/persons/resource/persons181459

Schüssler,  R. X.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons98214

Bekker,  H.
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons198584

Cakir,  H.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30383

Crespo López Urrutia,  J. R.
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons186043

Door,  M.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons181461

Filianin,  P. E.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30565

Harman,  Z.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons226461

Huang,  W. J.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30659

Keitel,  C. H.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons226719

König.,  C. M.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons134873

Kromer,  K.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons224530

Müller,  M.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37881

Rischka,  A.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons194676

Schweiger,  C.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31090

Sturm,  S.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30445

Eliseev,  S.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30312

Blaum,  K.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

External Ressource
Fulltext (public)

2005.04892
(Preprint), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Schüssler, R. X., Bekker, H., Braß, M., Cakir, H., Crespo López Urrutia, J. R., Door, M., et al. (2020). Detection of metastable electronic states by Penning trap mass spectrometry. Nature, 581, 42-46. doi:10.1038/s41586-020-2221-0.


Cite as: http://hdl.handle.net/21.11116/0000-0006-56C2-E
Abstract
State-of-the-art optical clocks achieve precisions of 10−18 or better using ensembles of atoms in optical lattices or individual ions in radio-frequency traps. Promising candidates for use in atomic clocks are highly charged ions (HCIs) and nuclear transitions, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range that are accessible to frequency combs. However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10−11—an improvement by a factor of ten compared with previous measurements. With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 × 1016 hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 × 10−8 hertz and one of the highest electronic quality factors (1024) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions in HCIs, which are required for precision studies of fundamental physics.