English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) I: Organization of the flight motor

MPS-Authors
/persons/resource/persons246218

Wagner,  H
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Department Information Processing in Insects, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wagner, H. (1986). Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) I: Organization of the flight motor. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 312(1158), 527-551. doi:10.1098/rstb.1986.0017.


Cite as: https://hdl.handle.net/21.11116/0000-0006-5952-A
Abstract
Free-flying houseflies have been filmed simultaneously from two sides. The orientation of the flies’ body axes in three-dimensional space can be seen on the films. A method is presented for the reconstruction of the flies’ movements in a fly-centred coordinate system, relative to an external coordinate system and relative to the airstream. The flies are regarded as three-dimensionally rigid bodies. They move with respect to the six degrees of freedom they thus possess. The analysis of the organization of the flight motor from the kinematic data leads to the following conclusions: the sideways movements can, at least qualitatively, be explained by taking into account the sideways forces resulting from rolling the body about the long axis and the influence of inertia. Thus, the force vector generated by the flight motor is most probably located in the fly’s midsagittal plane. The direction of this vector can be varied by the fly in a restricted range only. In contrast, the direction of the torque vector can be freely adjusted by the fly. No coupling between the motor force and the torques is indicated. Changes of flight direction may be explained by changes in the orientation of the body axes: straight flight at an angle of sideslip differing from zero is due to rolling. Sideways motion during the banked turns as well as the decrease of translation velocity observed in curves are a consequence of the inertial forces and rolling. The results are discussed with reference to studies about the aerodynamic performance of insects and the constraints for aerial pursuit.