Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics

MPG-Autoren
/persons/resource/persons117971

Kittilä,  Tiia
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kaniusaite, M., Tailhades, J., Kittilä, T., Fage, C. D., A., R. J., Goode, et al. (2021). Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics. The FEBS Journal, 288(2), 507-529. doi:10.1111/febs.15350.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-5975-3
Zusammenfassung
The biosynthesis of the glycopeptide antibiotics (GPAs) demonstrates the exceptional ability of non‐ribosomal peptide synthesis to generate diverse and complex structures from an expanded array of amino acid precursors. Whilst the heptapeptide cores of GPAs share a conserved C‐terminus, including the aromatic residues involved crosslinking and that are essential for the antibiotic activity of GPAs, most structural diversity is found within the N‐terminus of the peptide. Furthermore, the origin of the (D)‐stereochemistry of residue 1 of all GPAs is currently unclear, despite its importance for antibiotic activity. Given these important features, we have now reconstituted modules 1‐4 of the non‐ribosomal peptide synthetase (NRPS) assembly lines that synthesise the clinically‐relevant type IV GPA teicoplanin and the related compound A40926. Our results show that important roles in amino acid modification during the NRPS‐mediated biosynthesis of GPAs can be ascribed to the actions of condensation domains present within these modules, including the incorporation of (D)‐amino acids at position 1 of the peptide. Our results also indicate that hybrid NRPS assembly lines can be generated in a facile manner by mixing NRPS proteins from different systems, and that uncoupling of peptide formation due to different rates of activity seen for NRPS modules can be controlled by varying the ratio of NRPS modules. Taken together, this indicates that NRPS assembly lines function as dynamic peptide assembly lines and not static megaenzyme complexes, which has significant implications for biosynthetic redesign of these important biosynthetic systems.