日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Calcium-Dependent Protein Kinase CPK1 Controls Cell Death by In Vivo Phosphorylation of Senescence Master Regulator ORE1

MPS-Authors
/persons/resource/persons198566

Sedaghatmehr,  M.
Stress Control Networks, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons247508

Matallana-Ramirez,  L.P.
Stress Control Networks, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97400

Schulze,  W. X.
Signalling Proteomics, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97060

Balazadeh,  S.
Stress Control Networks, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource

Link
(全文テキスト(全般))

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Durian, G., Sedaghatmehr, M., Matallana-Ramirez, L., Schilling, S. M., Schaepe, S., Guerra, T., Herde, M., Witte, C.-P., Mueller-Roeber, B., Schulze, W. X., Balazadeh, S., & Romeis, T. (2020). Calcium-Dependent Protein Kinase CPK1 Controls Cell Death by In Vivo Phosphorylation of Senescence Master Regulator ORE1. The Plant Cell, 32(5), 1610-1625. doi:10.1105/tpc.19.00810.


引用: https://hdl.handle.net/21.11116/0000-0006-5D2E-0
要旨
Calcium-regulated protein kinases are key components of intracellular signaling in plants that mediate rapid stress-induced responses to changes in the environment. To identify in vivo phosphorylation substrates of CALCIUM-DEPENDENT PROTEIN KINASE1 (CPK1), we analyzed the conditional expression of constitutively active CPK1 in conjunction with in vivo phosphoproteomics. We identified Arabidopsis (Arabidopsis thaliana) ORESARA1 (ORE1), the developmental master regulator of senescence, as a direct CPK1 phosphorylation substrate. CPK1 phosphorylates ORE1 at a hotspot within an intrinsically disordered region. This augments transcriptional activation by ORE1 of its downstream target gene BIFUNCTIONAL NUCLEASE1 (BFN1). Plants that overexpress ORE1, but not an ORE1 variant lacking the CPK1 phosphorylation hotspot, promote early senescence. Furthermore, ORE1 is required for enhanced cell death induced by CPK1 signaling. Our data validate the use of conditional expression of an active enzyme combined with phosphoproteomics to decipher specific kinase target proteins of low abundance, of transient phosphorylation, or in yet-undescribed biological contexts. Here, we have identified that senescence is not just under molecular surveillance manifested by stringent gene regulatory control over ORE1. In addition, the decision to die is superimposed by an additional layer of control toward ORE1 via its posttranslational modification linked to the calcium-regulatory network through CPK1.