English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Magnetic Sensitivity of the Resonance and Subordinate Lines of Mg II in the Solar Chromosphere

MPS-Authors
/persons/resource/persons204430

Manso Sainz,  R.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

del Pino Alemán, T., Trujillo Bueno, J., Casini, R., & Manso Sainz, R. (2020). The Magnetic Sensitivity of the Resonance and Subordinate Lines of Mg II in the Solar Chromosphere. The Astrophysical Journal, 891(1): 91. doi:10.3847/1538-4357/ab6bc9.


Cite as: https://hdl.handle.net/21.11116/0000-0006-A001-3
Abstract
We carry out a theoretical study of the polarization of the solar Mg ii h–k doublet (including its extended wings) and the subordinate ultraviolet (UV) triplet around 280 nm. These lines are of great diagnostic interest, as they encode information on the physical properties of the solar atmosphere from the upper photosphere to the chromosphere–corona transition region. We base our study on radiative transfer calculations of spectral line polarization in one-dimensional models of quiet and plage regions of the solar atmosphere. Our calculations take into account the combined action of atomic polarization, quantum level interference, frequency redistribution, and magnetic fields of arbitrary strength. In particular, we study the sensitivity of the emergent Stokes profiles to changes in the magnetic field through the Zeeman and Hanle effects. We also study the impact of the chromospheric plasma dynamics on the emergent Stokes profiles, taking into account the angle-dependent frequency redistribution in the h–k resonance transitions. The results presented here are of interest for the interpretation of spectropolarimetric observations in this important region of the solar UV spectrum.