English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Fast cation exchange of layered sodium transition metal oxides for boosting oxygen evolution activity and enhancing durability

MPS-Authors
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chu, S., Guan, D., Sun, H., Fei, L., Hu, Z., Lin, H.-J., et al. (2020). Fast cation exchange of layered sodium transition metal oxides for boosting oxygen evolution activity and enhancing durability. Journal of Materials Chemistry A, 8, 8075-8083. doi:10.1039/d0ta02417a.


Cite as: https://hdl.handle.net/21.11116/0000-0006-6AC3-7
Abstract
Cost-effective electrocatalysts with high activity and long durability for the oxygen evolution reaction (OER) are key to water splitting and rechargeable metal-air batteries. Here, we report the development of a superior OER electrocatalyst with outstanding activity, favorable durability, and stable particulate morphology based on an ex situ ultra-fast cation exchange strategy that can result in fine tuning of the atom arrangement inside the oxide lattice, thus optimizing the electrocatalytic performance. O3-phase NaCo0.8Fe0.2O2 (O-NCF) is selected as the starting material, and the sodium in the oxide lattice is rapidly exchanged (several minutes) with hydronium ions (H3O+) in an acidic solution. The as-derived structure fine-tuned sample displays excellent OER performances in alkaline media with an ultra-low overpotential of only 234 mV at 10 mA cm-2 in oxide-based electrocatalysts and an ultra-small Tafel slope of 34 mV dec-1. The exchange of H3O+ with Na+ does not affect the oxidation state of cobalt and iron cations inside the oxide lattice, while protons in the inserted H3O+ promote the formation of the hydroxyl group to improve activity. As a general strategy, such cation exchange strategy can also be applied to many other layered sodium transition metal oxides. © The Royal Society of Chemistry.