User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse





Adversarial manipulation of human decision-making


Dayan,  P
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Dezfouli, A., Nock, R., & Dayan, P. (submitted). Adversarial manipulation of human decision-making.

Cite as: http://hdl.handle.net/21.11116/0000-0006-6B82-F
Adversarial examples are carefully crafted input patterns that are surprisingly poorly classified by artificial and/or natural neural networks. Here we examine adversarial vulnerabilities in the processes responsible for learning and choice in humans. Building upon recent recurrent neural network models of choice processes, we propose a general framework for generating adversarial opponents that can shape the choices of individuals in particular decision-making tasks towards the behavioural patterns desired by the adversary. We show the efficacy of the framework through two experiments involving action selection and response inhibition. We further investigate the strategy used by the adversary in order to gain insights into the vulnerabilities of human choice. The framework may find applications across behavioural sciences in helping detect and avoid flawed choice.