English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Phenotypic Search on Graft Compatibility in Grapevine

MPS-Authors
/persons/resource/persons247704

Tedesco,  S.
Intercellular Macromolecular Transport, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97248

Kragler,  F.
Intercellular Macromolecular Transport, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tedesco, S., Pina, A., Fevereiro, P., & Kragler, F. (2020). A Phenotypic Search on Graft Compatibility in Grapevine. Agronomy, 10(5): 706. doi:10.3390/agronomy10050706.


Cite as: https://hdl.handle.net/21.11116/0000-0006-6D69-B
Abstract
Grafting is the most used propagation method in viticulture and is the unique control strategy against Phylloxera. Nevertheless, its practice remains limited mainly due to inconsistent graft success and difficulties in predicting graft compatibility responses of proposed scionndash;rootstock combinations, slowing down the selection of elite rootstocks. Aiming to identify optimal phenotypic parameters related to graft (in)compatibility, we used four clones of two grapevine cultivars that show different compatibility behavior when grafted onto the same rootstock. Several physiological parameters, internal anatomy of the graft union, chlorophyll fluorescence, and pigment contents of homo- and heterografts were monitored in a nursery-grafting context. The measurements highlighted enhanced performance of the heterografts due to rooting difficulties of Vitis vinifera homografts. This suggests that in viticulture, homografts should only be used as compatibility controls regarding qualitative attributes. By observing the internal anatomy of the union, we found that grapevines might require longer times for graft healing than anticipated. While Affinity Coefficients were not informative to assess incompatibility, leaf chlorophyll concentration analysis proved to be a more sensitive indicator of stress than the analysis of chlorophyll fluorescence. Overall, we conclude that graft take correlated best with callus formation at the graft junction three weeks after grafting.