English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Conservation and diversification of flavonoid metabolism in the plant kingdom

MPS-Authors
/persons/resource/persons104918

Alseekh,  S.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97147

Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wen, W., Alseekh, S., & Fernie, A. R. (2020). Conservation and diversification of flavonoid metabolism in the plant kingdom. Current Opinion in Plant Biology, 55, 100-108. doi:10.1016/j.pbi.2020.04.004.


Cite as: https://hdl.handle.net/21.11116/0000-0006-6D85-A
Abstract
Flavonoids are by far the largest class of polyphenols with huge structural and functional diversity. However, the mystery regarding the exact evolutionary pressures which lead to the amazing diversity in plant flavonoids has yet to be completely uncovered. Here we review recent advances in understanding the conservation and diversification of flavonoid pathway from algae and early land plants to vascular plants including the model plant Arabidopsis and economically important species such as cereals, legumes, and medicinal plants. Studies on the origin and evolution of R2R3-MYB regulatory system demonstrated its highly conserved function of regulating flavonoid production in land plants and this innovation appears to have been crucial in boosting the overall levels of these compounds in land plants. Convergent evolution has occurred as different flavonoids independently which emerged in distant taxa resulting in similar defense and tolerance characteristics against environmental stresses. Future studies on an increasing number of plant species taking advantage of newly developed genomic and metabolite profiling technologies are envisaged to provide comprehensive insight into flavonoid biosynthesis as well as pathway diversification and the underlying evolutionary mechanisms.