English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Kernel-Based Machine Learning for Efficient Simulations of Molecular Liquids

MPS-Authors
/persons/resource/persons200235

Scherer,  Christoph
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons247790

Scheid,  René
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons47580

Andrienko,  Denis
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons130617

Bereau,  Tristan
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;
Emmy Noether Group Bereau: Biomolecular Simulations, MPI for Polymer Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

acs.jctc.9b01256.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Scherer, C., Scheid, R., Andrienko, D., & Bereau, T. (2020). Kernel-Based Machine Learning for Efficient Simulations of Molecular Liquids. Journal of Chemical Theory and Computation, 16(5), 3194-3204. doi:10.1021/acs.jctc.9b01256.


Cite as: https://hdl.handle.net/21.11116/0000-0006-6F12-A
Abstract
There is no abstract available