English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Field synchronized bidirectional current in confined driven colloids

MPS-Authors
/persons/resource/persons227777

Meng,  Fanlong
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons227773

Vilfan,  Andrej       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons219873

Golestanian,  Ramin       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Meng, F., Ortiz-Ambriz, A., Massana-Cid, H., Vilfan, A., Golestanian, R., & Tierno, P. (2020). Field synchronized bidirectional current in confined driven colloids. Physical Review Research, 2(1): 012025(R). doi:10.1103/PhysRevResearch.2.012025.


Cite as: https://hdl.handle.net/21.11116/0000-0006-9D5D-2
Abstract
We investigate the collective colloidal current that emerges when strongly confined magnetic microspheres are subjected to a biased, but spatially uniform, precessing magnetic field. We observe a net bidirectional current composed of colloidal particles which periodically meet assembling into rotating dimers, and exchange their positions in a characteristic, “ceilidh”-like dance. We develop a theoretical model which explains the physics of the observed phenomena as dimer rupture and onset of current, showing agreement with Brownian dynamic simulations. By varying the tilt angle and the frequency of the applied field, we discover two separate transport mechanisms based on different ways the dimers break up during particle transport. Our results demonstrate an effective technique to drive microscale matter by using a combination of confinement and homogeneous field modulations, not based on any gradient of the applied field.