Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis.

MPG-Autoren
/persons/resource/persons219042

Buchholz,  Frank
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219049

Calegari,  Federico
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Noack, F., Pataskar, A., Schneider, M., Buchholz, F., Tiwari, V. K., & Calegari, F. (2019). Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis. Life science alliance, 2(2): e201900331, pp. 1-1. doi:10.26508/lsa.201900331.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-7D38-0
Zusammenfassung
Dynamic changes in DNA (hydroxy-)methylation are fundamental for stem cell differentiation. However, the signature of these epigenetic marks in specific cell types during corticogenesis is unknown. Moreover, site-specific manipulation of cytosine modifications is needed to reveal the significance and function of these changes. Here, we report the first assessment of (hydroxy-)methylation in neural stem cells, neurogenic progenitors, and newborn neurons during mammalian corticogenesis. We found that gain in hydroxymethylation and loss in methylation occur sequentially at specific cellular transitions during neurogenic commitment. We also found that these changes predominantly occur within enhancers of neurogenic genes up-regulated during neurogenesis and target of pioneer transcription factors. We further optimized the use of dCas9-Tet1 manipulation of (hydroxy-)methylation, locus-specifically, in vivo, showing the biological relevance of our observations for Dchs1, a regulator of corticogenesis involved in developmental malformations and cognitive impairment. Together, our data reveal the dynamics of cytosine modifications in lineage-related cell types, whereby methylation is reduced and hydroxymethylation gained during the neurogenic lineage concurrently with up-regulation of pioneer transcription factors and activation of enhancers for neurogenic genes.