Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Comparative RNAi Screens in Isogenic Human Stem Cells Reveal SMARCA4 as a Differential Regulator.

MPG-Autoren
/persons/resource/persons219522

Paszkowski-Rogacz,  Maciej
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219308

Khattak,  Shahryar
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219042

Buchholz,  Frank
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Güneş, C., Paszkowski-Rogacz, M., Rahmig, S., Khattak, S., Camgöz, A., Wermke, M., et al. (2019). Comparative RNAi Screens in Isogenic Human Stem Cells Reveal SMARCA4 as a Differential Regulator. Stem cell reports, 12(5), 1084-1098. doi:10.1016/j.stemcr.2019.03.012.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-7D5C-8
Zusammenfassung
Large-scale RNAi screens are a powerful approach to identify functions of genes in a cell-type-specific manner. For model organisms, genetically identical (isogenic) cells from different cell types are readily available, making comparative studies meaningful. However, large-scale screens in isogenic human primary cells remain challenging. Here, we show that RNAi screens are possible in genetically identical human stem cells, using induced pluripotent stem cells as intermediates. The screens revealed SMARCA4 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4) as a stemness regulator, while balancing differentiation distinctively for each cell type. SMARCA4 knockdown in hematopoietic stem and progenitor cells caused impaired self-renewal in vitro and in vivo with skewed myeloid differentiation; whereas, in neural stem cells, it impaired self-renewal while biasing differentiation toward neural lineage, through combinatorial SWI/SNF subunit assembly. Our findings pose a powerful approach for deciphering human stem cell biology and attribute distinct roles to SMARCA4 in stem cell maintenance.