Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Imatinib mesylate and nilotinib decrease synthesis of bone matrix in vitro.


Kroschwald,  Sonja
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Kroschwald, L. M., Tauer, J. T., Kroschwald, S., Suttorp, M., Wiedenfeld, A., Beissert, S., et al. (2019). Imatinib mesylate and nilotinib decrease synthesis of bone matrix in vitro. Oncology letters, 18(2), 2102-2108. doi:10.3892/ol.2019.10518.

Cite as: https://hdl.handle.net/21.11116/0000-0006-7DC4-1
Tyrosine kinase inhibitors (TKIs), such as imatinib (IMA) and nilotinib (NIL), are the cornerstone of chronic myeloid leukemia (CML) treatment via the blockade of the oncogenic BCR-ABL1 fusion protein. However, skeletal side effects are commonly observed in pediatric patients receiving long-term treatment with IMA. Additionally, in vitro studies have shown that IMA and NIL alter vitamin D metabolism, which may further impair bone metabolism. To determine whether TKIs directly affect bone cell function, the present study treated the human osteoblastic cell line SaOS-2 with IMA or NIL and assessed effects on their mineralization capacity as well as mRNA expression of receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG), two cytokines that regulate osteoclastogenesis. Both TKIs significantly inhibited mineralization and downregulated osteoblast marker genes, including alkaline phosphatase, osteocalcin, osterix, as well as genes associated with the pro-osteogenic Wnt signaling pathway; NIL was more potent than IMA. In addition, both TKIs increased the RANKL/OPG ratio, which is known to stimulate osteoclastogenesis. The present results suggested that the TKIs IMA and NIL directly inhibited osteoblast differentiation and directly promoted a pro-osteoclastogenic environment through the RANKL-OPG signaling axis. Thus, we propose that future work is required to determine whether the bone health of CML patients undergoing TKI-treatment should be routinely monitored.