Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution

MPG-Autoren
/persons/resource/persons212552

Sinev,  Ilya
Department of Physics, Ruhr-University Bochum;
Interface Science, Fritz Haber Institute, Max Planck Society;

Lopez,  Miguel Bernal
Department of Physics, Ruhr-University Bochum;
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons212554

Kunze,  Sebastian
Department of Physics, Ruhr-University Bochum;
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons212550

Zegkinoglou,  Ioannis
Department of Physics, Ruhr-University Bochum;
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons214068

Bergmann,  Arno       
Electrochemical Energy, Catalysis, Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin;
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22163

Teschner,  Detre       
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons22020

Roldan Cuenya,  Beatriz       
Interface Science, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41467-020-16237-1.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dionigi, F., Zeng, Z., Sinev, I., Merzdorf, T., Deshpande, S., Lopez, M. B., et al. (2020). In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nature Communications, 11: 2522. doi:10.1038/s41467-020-16237-1.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-80FC-D
Zusammenfassung
NiFe and CoFe (MFe) layered double hydroxides (LDHs) are among the most active electrocatalysts for the alkaline oxygen evolution reaction (OER). Herein, we combine electrochemical measurements, operando X-ray scattering and absorption spectroscopy, and density functional theory (DFT) calculations to elucidate the catalytically active phase, reaction center and the OER mechanism. We provide the first direct atomic-scale evidence that, under applied anodic potentials, MFe LDHs oxidize from as-prepared α-phases to activated γ-phases. The OER-active γ-phases are characterized by about 8% contraction of the lattice spacing and switching of the intercalated ions. DFT calculations reveal that the OER proceeds via a Mars van Krevelen mechanism. The flexible electronic structure of the surface Fe sites, and their synergy with nearest-neighbor M sites through formation of O-bridged Fe-M reaction centers, stabilize OER intermediates that are unfavorable on pure M-M centers and single Fe sites, fundamentally accounting for the high catalytic activity of MFe LDHs.