English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structure determination of peracetylated glycosphingolipids by one‐ and two‐dimensional 1H NMR at 360 and 500 MHz

MPS-Authors
/persons/resource/persons92575

Dabrowski,  Janusz
Department of Organic Chemistry, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons123154

Dabrowski,  Ursula
Department of Organic Chemistry, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dabrowski, J., Dabrowski, U., Hanfland, P., Kordowicz, M., & Hull, W. E. (1986). Structure determination of peracetylated glycosphingolipids by one‐ and two‐dimensional 1H NMR at 360 and 500 MHz. Magnetic Resonance in Chemistry, 24(1), 59-69. doi:10.1002/mrc.1260240113.


Cite as: http://hdl.handle.net/21.11116/0000-0006-905B-1
Abstract
The analysis of two‐dimensional proton shift‐correlated 500 MHz NMR spectra of several peracetylated glycosphingolipids confirmed that peracetylated oligosaccharides are particularly well suited for the identification of the constituent sugar residues and the elucidation of the sites of glycosidic linkage. Although a number of partial sequences could be determined by inter‐residue nuclear Overhauser effect or long‐range scalar coupling across the glycosidic bonds, the full sequence determination of larger oligosaccharides has several limitations owing to experimental difficulties and possible ambiguities in assignments due to signal overlap. The following peracetylated glycosphingolipids were investigated by two‐dimensional methods at 500 MHz: Galα(1→4)Galβ(1→4)Glcβ(1→1)Cer (Cer = ceramide), GalNAcβ(1→3)Galα(1→4)Galβ(1→4)Glcβ(1→1) Cer (globoside) and Galα(1→3)Galβ(1→4)GlcNAcβ(1→3)Galα(1→3)Galβ(1→4)GlcNAcβ(1→6)Galβ(1→4)GlcNAcβ(1→3)Galβ(1→4)Glcβ(1→1)Cer. To compare the potential of one‐ and two‐dimensional methods, the spectra of peracetylated Galβ(1→4)Glcβ(1→1)Cer, Galβ(1→4)GlcNAcβ(1→3)Galβ(1→4)Glcβ(1→1)Cer. To compare the potential of one‐ and two‐dimentional methods, the spectra of peracetylted Galβ(1→4) Glcβ(1→1)Cer were assigned with the aid of spin‐decoupling difference spectroscopy at 360 MHz.