English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with C9orf72 hexanucleotide repeat expansion

MPS-Authors
/persons/resource/persons19981

Schroeter,  Matthias L.
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Barschke, P., Oeckl, P., Steinacker, P., Shweiki, M. R. A., Weishaupt, J. H., Landwehrmeyer, G. B., et al. (2020). Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. Journal of Neurology, Neurosurgery & Psychiatry, 91(5), 503-511. doi:10.1136/jnnp-2019-322476.


Cite as: https://hdl.handle.net/21.11116/0000-0006-9267-1
Abstract


Objectives: The hexanucleotide repeat expansion in the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (C9-ALS) and frontotemporal dementia (C9-FTD). Until now, it is unknown which factors define whether C9orf72 mutation carriers develop ALS or FTD. Our aim was to identify protein biomarker candidates in the cerebrospinal fluid (CSF) which differentiate between C9-ALS and C9-FTD and might be indicative for the outcome of the mutation.

Methods: We compared the CSF proteome of 16 C9-ALS and 8 C9-FTD patients and 11 asymptomatic C9orf72 mutation carriers (CAR) by isobaric tags for relative and absolute quantitation. Eleven biomarker candidates were selected from the pool of differentially regulated proteins for further validation by multiple reaction monitoring and single-molecule array in a larger cohort (n=156).

Results: In total, 2095 CSF proteins were identified and 236 proteins were significantly different in C9-ALS versus C9-FTD including neurofilament medium polypeptide (NEFM) and chitotriosidase-1 (CHIT1). Eight candidates were successfully validated including significantly increased ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) levels in C9-ALS compared with C9-FTD and controls and decreased neuronal pentraxin receptor (NPTXR) levels in C9-FTD versus CAR.

Conclusions: This study presents a deep proteomic CSF analysis of C9-ALS versus C9-FTD patients. As a proof of concept, we observed higher NEFM and CHIT1 CSF levels in C9-ALS. In addition, we also show clear upregulation of UCHL1 in C9-ALS and downregulation of NPTXR in C9-FTD. Significant differences in UCHL1 CSF levels may explain diverging ubiquitination and autophagy processes and NPTXR levels might reflect different synapses organisation processes.