English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

Binaural Interaction in the Nucleus Laminaris of the Barn Owl : A Quantitative Model

MPS-Authors
/persons/resource/persons248412

Grün,  S
Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons246218

Wagner,  H
Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons242005

Aertsen,  A
Former Department Structure and Function of Natural Nerve-Net , Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Grün, S., Wagner, H., Carr, C., & Aertsen, A.(1991). Binaural Interaction in the Nucleus Laminaris of the Barn Owl: A Quantitative Model (1991-01).


Cite as: https://hdl.handle.net/21.11116/0000-0006-95F7-B
Abstract
A quantitative, neuronal model is proposed for the computation of interaural time difference (ITD) in the auditory system of the barn owl. The model uses a general, probabilistic approach, and is composed of two stages, the characteristics of which are based on anatomical and physiological evidence. Excitatory inputs from both ears, phase-locked to the waveform of tonal stimuli, together with phase-independent inhibitory inputs are summated linearly. The result is transformed into a probability of spike generation by a sigmoid nonlinearity, constituting a stochastic, ’soft’ threshold with saturation. The model incorporates inhibition as a control parameter on the nonlinearity, and includes the usual crosscorrelation-type models as a special case. It has a minimum number of parameters, the values of which can be estimated from physiological data in a straightforward manner. This simple, general model accounts for the binaural response properties of physiologically recorded neurons. In particular, it explains the experimentally observed ITD-tuning and the increase of phase-locking from input to output neurons. The model predicts that a decrease in inhibition causes a non-monotonic change in sensitivity to ITD.