English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes.

MPS-Authors
/persons/resource/persons94215

Manstein,  Dietmar J.
Dietmar Manstein Group, Max Planck Institute for Medical Research, Max Planck Society;
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons197463

Pai,  Emil F.
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Manstein, D. J., & Pai, E. F. (1986). Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes. The Journal of Biological Chemistry, 261(34), 16169-16173. Retrieved from https://www.jbc.org/content/261/34/16169.abstract.


Cite as: https://hdl.handle.net/21.11116/0000-0006-991B-0
Abstract
The bifunctional enzyme FAD synthetase from Brevibacterium ammoniagenes was purified by a method involving ATP-affinity chromatography. The final preparation was more than 95% pure. The apparent molecular weight of the enzyme was determined as 38,000 and the isoelectric point as 4.6. Although previous attempts to separate the enzymatic activities had failed, ATP:riboflavin 5'-phosphotransferase and ATP:FMN-adenylyltransferase activities in B. ammoniagenes were believed to be located on two separate proteins with similar properties, possibly joined in a complex. The following evidence, however, suggests the presence of both activities on a single polypeptide chain. The two activities copurify in the same ratio through the purification scheme as presented. Only a single band could be detected when aliquots from the final purification step were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, nondenaturing gel electrophoresis, and isoelectric focusing. Edman degradation of the protein yielded a single N-terminal sequence.