English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

First Eu(II)/Ln(III) Mixed Complex with High Oxidative Stability

MPS-Authors
There are no MPG-Authors available
External Ressource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wei, Y., & Wang, G. (2015). First Eu(II)/Ln(III) Mixed Complex with High Oxidative Stability. Crystal Growth & Design, 25(11), 5288-5292. doi:10.1021/acs.cgd.5b00804.


Cite as: http://hdl.handle.net/21.11116/0000-0006-9956-D
Abstract
Due to the instability of divalent europium ions, the heterometallic Eu(II)/Ln(III) complex has not yet been reported. By utilizing coordination chemistry principles, a macrocyclic ligand, N,N′,N″,N‴-tetra(2-hydroxy-3-methoxy-5-methylbenzyl)-1,4,7,10-tetraazacyclododecae (H4L), has been rationally designed to encapsulate Eu2+ and to enable direct formation of the first mixed Eu(II)/Ln(III) complexes, namely, EuII2LnIII4(OH)4(NIC)4L2 (Ln = Sm, Eu, Tb; HNIC = nicotinic acid). Two divalent europium ions are trapped within the macrocyclic cavities of designed ligands L and are further isolated from the environment by outside phenyl rings and the tetrahedral 4Ln(III) cluster, resulting in the enhanced stability of Eu2+. Cyclic voltammetry experiments showed that the oxidation potential of Eu2+ in the heterovalent 2Eu(II)/4Ln(III) cluster is larger than that for the ferrocene/ferrocenium redox couple, which has never been reported previously for Eu2+-containing complexes. Further development of Eu(II) complexes has been limited because Eu2+ could be easily oxidized to Eu3+. The dramatic oxidative stability of as-synthesized complexes not only verifies the synthetic feasibility but also highlights the prospective applications of mixed Eu(II)/Ln(III) coordination complexes.