English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tropical forests did not recover from the strong 2015–2016 El Niño event

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BEX970.pdf
(Publisher version), 408KB

Supplementary Material (public)

BEX970s1.pdf
(Supplementary material), 2MB

Citation

Wigneron, J.-P., Fan, L., Ciais, P., Bastos, A., Brandt, M., Chave, J., et al. (2020). Tropical forests did not recover from the strong 2015–2016 El Niño event. Science Advances, 6(6): eaay4603. doi:10.1126/sciadv.aay4603.


Cite as: https://hdl.handle.net/21.11116/0000-0006-AB0A-F
Abstract
Severe drought and extreme heat associated with the 2015-2016 El Nino event have led to large carbon emissions from the tropical vegetation to the atmosphere. With the return to normal climatic conditions in 2017, tropical forest aboveground carbon (AGC) stocks are expected to partly recover due to increased productivity, but the intensity and spatial distribution of this recovery are unknown. We used low-frequency microwave satellite data (L-VOD) to feature precise monitoring of AGC changes and show that the AGC recovery of tropical ecosystems was slow and that by the end of 2017, AGC had not reached predrought levels of 2014. From 2014 to 2017, tropical AGC stocks decreased by 1.3(1.2)(1.5)Pg C due to persistent AGC losses in Africa (-0.9(-1.1)(-0.8)Pg C) and America (-0.5(-0.6)(-0.4)Pg C). Pantropically, drylands recovered their carbon stocks to pre-El Nino levels, but African and American humid forests did not, suggesting carryover effects from enhanced forest mortality.