Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MoV10PAR-CLIP data

MPG-Autoren
/persons/resource/persons241703

Sawarkar,  Ritwick
Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Sievers et al..pdf
(Verlagsversion), 549KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sievers, C., Schlumpf, T., Sawarkar, R., Comoglio, F., & Paro, R. (2012). Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MoV10PAR-CLIP data. Nucleic Acids Research (London), 40, e160. doi:org/10.1093/nar/gks697.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-9E95-0
Zusammenfassung
The Photo-Activatable Ribonucleoside-enhanced CrossLinking and ImmunoPrecipitation (PAR-CLIP) method was recently developed for global identification of RNAs interacting with proteins. The strength of this versatile method results from induction of specific T to C transitions at sites of interaction. However, current analytical tools do not distinguish between non-experimentally and experimentally induced transitions. Furthermore, geometric properties at potential binding sites are not taken into account. To surmount these shortcomings, we developed a two-step algorithm consisting of a non-parametric two-component mixture model and a wavelet-based peak calling procedure. Our algorithm can reduce the number of false positives up to 24% thereby identifying high confidence interaction sites. We successfully employed this approach in conjunction with a modified PAR-CLIP protocol to study the functional role of nuclear Moloney leukemia virus 10, a putative RNA helicase interacting with Argonaute2 and Polycomb. Our method, available as the R package wavClusteR , is generally applicable to any substitution-based inference problem in genomics.