English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Convective boundary mixing in low- and intermediate-mass stars – I. Core properties from pressure-mode asteroseismology

MPS-Authors
/persons/resource/persons140524

Angelou,  George C.
Max Planck Research Group in Stellar Ages and Galactic Evolution (SAGE), Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons123110

Hekker,  Saskia
Max Planck Research Group in Stellar Ages and Galactic Evolution (SAGE), Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons209280

Mints,  Alexey
Max Planck Research Group in Stellar Ages and Galactic Evolution (SAGE), Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Angelou, G. C., Bellinger, E. P., Hekker, S., Mints, A., Elsworth, Y., Basu, S., et al. (2020). Convective boundary mixing in low- and intermediate-mass stars – I. Core properties from pressure-mode asteroseismology. Monthly Notices of the Royal Astronomical Society, 493(4), 4987-5004. doi:10.1093/mnras/staa390.


Cite as: https://hdl.handle.net/21.11116/0000-0006-F50A-B
Abstract
Convective boundary mixing (CBM) is ubiquitous in stellar evolution. It is a necessary ingredient in the models in order to match observational constraints from clusters, binaries, and single stars alike. We compute ‘effective overshoot’ measures that reflect the extent of mixing and which can differ significantly from the input overshoot values set in the stellar evolution codes. We use constraints from pressure modes to infer the CBM properties of Kepler and CoRoT main-sequence and subgiant oscillators, as well as in two radial velocity targets (Procyon A and α Cen A). Collectively, these targets allow us to identify how measurement precision, stellar spectral type, and overshoot implementation impact the asteroseismic solution. With these new measures, we find that the ‘effective overshoot’ for most stars is in line with physical expectations and calibrations from binaries and clusters. However, two F-stars in the CoRoT field (HD 49933 and HD 181906) still necessitate high overshoot in the models. Due to short mode lifetimes, mode identification can be difficult in these stars. We demonstrate that an incongruence between the radial and non-radial modes drives the asteroseismic solution to extreme structures with highly efficient CBM as an inevitable outcome. Understanding the cause of seemingly anomalous physics for such stars is vital for inferring accurate stellar parameters from TESS data with comparable timeseries length.