English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Anterior and Medial Thalamic Nuclei and the Human Limbic System: Tracing the Structural Connectivity Using Diffusion-Weighted Imaging

MPS-Authors
/persons/resource/persons192649

Grodd,  W
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192802

Kumar,  VJ
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84202

Schüz,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216054

Lindig,  T
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Grodd, W., Kumar, V., Schüz, A., Lindig, T., & Scheffler, K. (2020). The Anterior and Medial Thalamic Nuclei and the Human Limbic System: Tracing the Structural Connectivity Using Diffusion-Weighted Imaging. Scientific Reports, 10(1): 10957. doi:10.1038/s41598-020-67770-4.


Cite as: https://hdl.handle.net/21.11116/0000-0006-A857-B
Abstract
The limbic system is a phylogenetically old, behaviorally defined system that serves as a center for emotions. It controls the expression of anger, fear, and joy and also influences sexual behavior, vegetative functions, and memory. The system comprises a collection of tel-, di-, and mesencephalic structures whose components have evolved and increased over time. Previous animal research indicates that the anterior nuclear group of the thalamus (ANT), as well as the habenula (Hb) and the adjacent mediodorsal nucleus (MD) each play a vital role in the limbic circuitry. Accordingly, diffusion imaging data of 730 subjects obtained from the Human Connectome Project and the masks of six nuclei (anterodorsal, anteromedial, anteroventral, lateral dorsal, Hb, and MD) served as seed regions for a direct probabilistic tracking to the rest of the brain using diffusion-weighted imaging. The results revealed that the ANT nuclei are part of the limbic and the memory system as they mainly connect via the mammillary tract, mammillary body, anterior commissure, fornix, and retrosplenial cortices to the hippocampus, amygdala, medio-temporal, orbito-frontal and occipital cortices. Furthermore, the ANT nuclei showed connections to the mesencephalon and brainstem to varying extents, a pattern rarely described in experimental findings. The habenula-usually defined as part of the epithalamus-was closely connected to the tectum opticum and seems to serve as a neuroanatomical hub between the visual and the limbic system, brainstem, and cerebellum. Finally, in contrast to experimental findings with tracer studies, directly determined connections of MD were mainly confined to the brainstem, while indirect MD fibers form a broad pathway connecting the hippocampus and medio-temporal areas with the mediofrontal cortex.