English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A parameter survey of Sgr A* radiative models from GRMHD simulations with self-consistent electron heating

MPS-Authors
/persons/resource/persons146381

Dexter,  J.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons216133

Jiménez-Rosales,  A.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons216131

Bauböck,  M.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons225865

de Zeeuw,  P. T.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4766

Eisenhauer,  F.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons206120

Fellenberg,  S. von
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons214427

Gao,  F.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4590

Genzel,  R.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4768

Gillessen,  S.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons181377

Habibi,  M.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons16190

Ott,  T.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons248280

Stadler,  J.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons232635

Straub,  O.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons214431

Widmann,  F.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dexter, J., Jiménez-Rosales, A., Ressler, S. M., Tchekhovskoy, A., Bauböck, M., de Zeeuw, P. T., et al. (2020). A parameter survey of Sgr A* radiative models from GRMHD simulations with self-consistent electron heating. Monthly Notices of the Royal Astronomical Society, 494(3), 4168-4186. doi:10.1093/mnras/staa922.


Cite as: https://hdl.handle.net/21.11116/0000-0006-AB58-7
Abstract
The Galactic centre black hole candidate Sgr A* is the best target for studies of low-luminosity accretion physics, including with near-infrared (NIR) and submillimetre wavelength long baseline interferometry experiments. Here, we compare images and spectra generated from a parameter survey of general relativistic MHD simulations to a set of radio to NIR observations of Sgr A*. Our models span the limits of weak and strong magnetization and use a range of sub-grid prescriptions for electron heating. We find two classes of scenarios can explain the broad shape of the submillimetre spectral peak and the highly variable NIR flaring emission. Weakly magnetized ‘disc-jet’ models where most of the emission is produced near the jet wall, consistent with past work, as well as strongly magnetized (magnetically arrested disc) models where hot electrons are present everywhere. Disc-jet models are strongly depolarized at submillimetre wavelengths as a result of strong Faraday rotation, inconsistent with observations of Sgr A*. We instead favour the strongly magnetized models, which provide a good description of the median and highly variable linear polarization signal. The same models can also explain the observed mean Faraday rotation measure and potentially the polarization signals seen recently in Sgr A* NIR flares.