English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7 ​T

MPS-Authors
/persons/resource/persons23475

Bazin,  Pierre-Louis
Department of Psychology, University of Amsterdam, the Netherlands;
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons147461

Weiskopf,  Nikolaus
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Felix Bloch Institute for Solid State Physics, University of Leipzig, Germany;

/persons/resource/persons20053

Trampel,  Robert
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Miletic_2020.pdf
(Publisher version), 4MB

Supplementary Material (public)

Miletic_2020_Suppl.docx
(Supplementary material), 240KB

Citation

Miletic, S., Bazin, P.-L., Weiskopf, N., van der Zwaag, W., Forstmann, B. U., & Trampel, R. (2020). fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7 ​T. NeuroImage, 219: 116992. doi:10.1016/j.neuroimage.2020.116992.


Cite as: https://hdl.handle.net/21.11116/0000-0006-AF58-3
Abstract
Most fundamental cognitive processes rely on brain networks that include both cortical and subcortical structures. Studying such networks using functional magnetic resonance imaging (fMRI) requires a data acquisition protocol that provides blood-oxygenation-level dependent (BOLD) sensitivity across the entire brain. However, when using standard single echo, echo planar imaging protocols, researchers face a tradeoff between BOLD-sensitivity in cortex and in subcortical areas. Multi echo protocols avoid this tradeoff and can be used to optimize BOLD-sensitivity across the entire brain, at the cost of an increased repetition time. Here, we empirically compare the BOLD-sensitivity of a single echo protocol to a multi echo protocol. Both protocols were designed to meet the specific requirements for studying small, iron rich subcortical structures (including a relatively high spatial resolution and short echo times), while retaining coverage and BOLD-sensitivity in cortical areas. The results indicate that both sequences lead to similar BOLD-sensitivity across the brain at 7 ​T.