English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7 ​T

MPS-Authors
/persons/resource/persons23475

Bazin,  Pierre-Louis
Department of Psychology, University of Amsterdam, the Netherlands;
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons147461

Weiskopf,  Nikolaus
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Felix Bloch Institute for Solid State Physics, University of Leipzig, Germany;

/persons/resource/persons20053

Trampel,  Robert
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Miletic.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Miletic, S., Bazin, P.-L., Weiskopf, N., van der Zwaag, W., Forstmann, B. U., & Trampel, R. (2020). fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7 ​T. NeuroImage, 219: 116992. doi:10.1016/j.neuroimage.2020.116992.


Cite as: https://hdl.handle.net/21.11116/0000-0006-AF58-3
Abstract
Most fundamental cognitive processes rely on brain networks that include both cortical and subcortical structures. Studying such networks using functional magnetic resonance imaging (fMRI) requires a data acquisition protocol that provides blood-oxygenation-level dependent (BOLD) sensitivity across the entire brain. However, when using standard single echo, echo planar imaging protocols, researchers face a tradeoff between BOLD-sensitivity in cortex and in subcortical areas. Multi echo protocols avoid this tradeoff and can be used to optimize BOLD-sensitivity across the entire brain, at the cost of an increased repetition time. Here, we empirically compare the BOLD-sensitivity of a single echo protocol to a multi echo protocol. Both protocols were designed to meet the specific requirements for studying small, iron rich subcortical structures (including a relatively high spatial resolution and short echo times), while retaining coverage and BOLD-sensitivity in cortical areas. The results indicate that both sequences lead to similar BOLD-sensitivity across the brain at 7 ​T.