English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The slope conjecture for Montesinos knots

MPS-Authors
/persons/resource/persons249044

Lee,  Christine Ruey Shan
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

arXiv:1807.00957.pdf
(Preprint), 988KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Garoufalidis, S., Lee, C. R. S., & van der Veen, R. (2020). The slope conjecture for Montesinos knots. International Journal of Mathematics, 31(7): 2050056. doi:10.1142/S0129167X20500561.


Cite as: https://hdl.handle.net/21.11116/0000-0006-B310-D
Abstract
The Slope Conjecture relates the degree of the colored Jones polynomial of a
knot to boundary slopes of incompressible surfaces. Our aim is to prove the
Slope Conjecture for Montesinos knots, and to match parameters of a
state-formula for the colored Jones polynomial of such knots with the
parameters that describe their corresponding incompressible surfaces via the
Hatcher-Oertel algorithm.