Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

The formation history of subhalos and the evolution of satellite galaxies


Nelson,  Dylan
Galaxy Formation, MPI for Astrophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Shi, J., Wang, H., Mo, H., Vogelsberger, M., Ho, L. C., Du, M., et al. (2020). The formation history of subhalos and the evolution of satellite galaxies. The Astrophysical Journal, 893(2): 139. doi:10.3847/1538-4357/ab8464.

Cite as: https://hdl.handle.net/21.11116/0000-0006-B815-3
Satellites constitute an important fraction of the overall galaxy population and are believed to form in dark matter subhalos. Here we use the cosmological hydrodynamic simulation TNG100 to investigate how the formation histories of subhalos affect the properties and evolution of their host galaxies. We use a scaled formation time (anf) to characterize the mass assembly histories of the subhalos before they are accreted by massive host halos. We find that satellite galaxies in young subhalos (low anf) are less massive and more gas rich, and have stronger star formation and a higher fraction of ex situ stellar mass than satellites in old subhalos (high anf). Furthermore, these low anf satellites require longer timescales to be quenched as a population than the high anf counterparts. We find very different merger histories between satellites in fast accretion (FA, anf <1.3) and slow accretion (SA, anf >1.3) subhalos. For FA satellites, the galaxy merger frequency dramatically increases just after accretion, which enhances the star formation at accretion. While, for SA satellites, the mergers occur smoothly and continuously across the accretion time. Moreover, mergers with FA satellites happen mainly after accretion, while a contrary trend is found for SA satellites. Our results provide insight into the evolution and star formation quenching of the satellite population.