English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

Local differences in neuronal activation level decorrelate spatially coherent global fluctuations in gamma rhythms

MPS-Authors
/persons/resource/persons249170

Lakshminarasimhan,  KJ
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84007

Keliris,  G
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lakshminarasimhan, K., Logothetis, N., & Keliris, G. (submitted). Local differences in neuronal activation level decorrelate spatially coherent global fluctuations in gamma rhythms.


Cite as: https://hdl.handle.net/21.11116/0000-0006-BA2F-5
Abstract
Neuronal coherence is thought to constitute a unique substrate for information transmission distinct from firing rate. However, since the spatial scale of extracellular oscillations typically exceeds that of firing rates, it is unclear whether coherence complements or compromises the rate code. We examined responses in the macaque primary visual cortex and found that fluctuations in gamma-band (~40Hz) neuronal coherence correlated more with firing rate than oscillations in the local-field-potential (LFP). Although the spatial extent of LFP rhythms was broader, that of neuronal coherence was indistinguishable from firing rates. To identify the mechanism, we developed a statistical technique to isolate the rhythmic component of the spiking process and found that above results are explained by an activation-dependent increase in neuronal sensitivity to gamma-rhythmic input. Such adaptive changes in sensitivity to rhythmic inputs might constitute a fundamental homeostatic mechanism that prevents globally coherent inputs from undermining spatial resolution of the neural code.