Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Social immunity modulates competition between coinfecting pathogens


Hilbe,  Christian
External Organizations;
Max Planck Research Group Dynamics of Social Behavior (Hilbe), Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource

(Publisher version)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Milutinović, B., Stock, M., Grasse, A. V., Naderlinger, E., Hilbe, C., & Cremer, S. (2020). Social immunity modulates competition between coinfecting pathogens. Ecology Letters, 23(3), 565-574. doi:10.1111/ele.13458.

Cite as: https://hdl.handle.net/21.11116/0000-0006-BAAA-9
Abstract Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success while increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.