Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Overcoming Selectivity Issues in Reversible Catalysis: A Transfer Hydrocyanation Exhibiting High Kinetic Control

MPG-Autoren
/persons/resource/persons199697

Bhawal,  Benjamin N.
ETH Zürich;
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Reisenbauer,  Julia C.
ETH Zürich;
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons145542

Morandi,  Bill
ETH Zürich;
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bhawal, B. N., Reisenbauer, J. C., Ehinger, C., & Morandi, B. (2020). Overcoming Selectivity Issues in Reversible Catalysis: A Transfer Hydrocyanation Exhibiting High Kinetic Control. Journal of the American Chemical Society, 142(25), 10914-10920. doi:10.1021/jacs.0c03184.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-C65C-4
Zusammenfassung
Reversible catalytic reactions operate under thermodynamic control, and thus, establishing a selective catalytic system poses a considerable challenge. Herein, we report a reversible transfer hydrocyanation protocol that exhibits high selectivity for the thermodynamically less favorable branched isomer. Selectivity is achieved by exploiting the lower barrier for C–CN oxidative addition and reductive elimination at benzylic positions in the absence of a cocatalytic Lewis acid. Through the design of a novel type of HCN donor, a practical, branched-selective, HCN-free transfer hydrocyanation was realized. The synthetically useful resolution of a mixture of branched and linear nitrile isomers was also demonstrated to underline the value of reversible and selective transfer reactions. In a broader context, this work demonstrates that high kinetic selectivity can be achieved in reversible transfer reactions, thus opening new horizons for their synthetic applications.