English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies

MPS-Authors
/persons/resource/persons241099

van de Voort,  Freeke
Galaxy Formation, Cosmology, MPI for Astrophysics, Max Planck Society;

/persons/resource/persons4732

Pakmor,  Rüdiger
Stellar Astrophysics, MPI for Astrophysics, Max Planck Society;

/persons/resource/persons232866

Grand,  Robert J. J.
Galaxy Formation, Cosmology, MPI for Astrophysics, Max Planck Society;

/persons/resource/persons4606

Springel,  Volker
Computational Structure Formation, MPI for Astrophysics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

van de Voort, F., Pakmor, R., Grand, R. J. J., Springel, V., Gómez, F. A., & Marinacci, F. (2020). Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies. Monthly Notices of the Royal Astronomical Society, 494(4), 4867-4883. doi:10.1093/mnras/staa754.


Cite as: http://hdl.handle.net/21.11116/0000-0006-C0AA-1
Abstract
We use cosmological, magnetohydrodynamical simulations of Milky Way-mass galaxies from the Auriga project to study their enrichment with rapid neutron capture (r-process) elements. We implement a variety of enrichment models from both binary neutron star mergers and rare core-collapse supernovae. We focus on the abundances of (extremely) metal-poor stars, most of which were formed during the first ∼Gyr of the Universe in external galaxies and later accreted on to the main galaxy. We find that the majority of metal-poor stars are r-process enriched in all our enrichment models. Neutron star merger models result in a median r-process abundance ratio, which increases with metallicity, whereas the median trend in rare core-collapse supernova models is approximately flat. The scatter in r-process abundance increases for models with longer delay times or lower rates of r-process-producing events. Our results are nearly perfectly converged, in part due to the mixing of gas between mesh cells in the simulations. Additionally, different Milky Way-mass galaxies show only small variation in their respective r-process abundance ratios. Current (sparse and potentially biased) observations of metal-poor stars in the Milky Way seem to prefer rare core-collapse supernovae over neutron star mergers as the dominant source of r-process elements at low metallicity, but we discuss possible caveats to our models. Dwarf galaxies that experience a single r-process event early in their history show highly enhanced r-process abundances at low metallicity, which is seen both in observations and in our simulations. We also find that the elements produced in a single event are mixed with ≈108 M of gas relatively quickly, distributing the r-process elements over a large region.