Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Stability of halocarbons in air samples stored in stainless-steel canisters


Williams,  Jonathan
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;


Brenninkmeijer,  Carl A. M.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Schuck, T. J., Blank, A.-K., Rittmeier, E., Williams, J., Brenninkmeijer, C. A. M., Engel, A., et al. (2020). Stability of halocarbons in air samples stored in stainless-steel canisters. Atmospheric Measurement Techniques, 13(1), 73-84. doi:10.5194/amt-13-73-2020.

Cite as: http://hdl.handle.net/21.11116/0000-0006-CEC4-5
Measurements of halogenated trace gases in ambient air frequently rely on canister sampling followed by offline laboratory analysis. This allows for a large number of compounds to be analysed under stable conditions, maximizing measurement precision. However, individual compounds might be affected during the sampling and storage of canister samples. In order to assess halocarbon stability in whole-air samples from the upper troposphere and lowermost stratosphere, we performed stability tests using the high-resolution sampler (HIRES) air sampling unit, which is part of the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) instrument package. The HIRES unit holds 88 lightweight stainless-steel cylinders that are pressurized in flight to 4.5 bar using metal bellows pumps. The HIRES unit was first deployed in 2010 but has up to now not been used for regular halocarbon analysis with the exception of chloromethane analysis. The sample collection unit was tested for the sampling and storage effects of 28 halogenated compounds. The focus was on compound stability in the stainless-steel canisters during storage of up to 5 weeks and on the influence of ozone, since flights take place in the upper troposphere and lowermost stratosphere with ozone mixing ratios of up to several hundred parts per billion by volume (ppbv). Most of the investigated (hydro)chlorofluorocarbons and long-lived hydrofluorocarbons were found to be stable over a storage time of up to 5 weeks and were unaltered by ozone being present during pressurization. Some compounds such as dichloromethane, trichloromethane, and tetrachloroethene started to decrease in the canisters after a storage time of more than 2 weeks or exhibited lowered mixing ratios in samples pressurized with ozone present. A few compounds such as tetrachloromethane and tribromomethane were found to be unstable in the HIRES stainless-steel canisters independent of ozone levels. Furthermore, growth was observed during storage for some species, namely for HFC-152a, HFC-23, and Halon 1301.