English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Eu-doped ZnO nanowire arrays grown by electrodeposition

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lupan, O., Pauporté, T., Viana, B., Aschehoug, P., Ahmadi, M., Roldan Cuenya, B., et al. (2013). Eu-doped ZnO nanowire arrays grown by electrodeposition. Applied Surface Science, 282, 782-788. doi:10.1016/j.apsusc.2013.06.053.


Cite as: https://hdl.handle.net/21.11116/0000-0006-CB1C-7
Abstract
The preparation of efficient light emitting diodes requires active optical layers working at low voltage for light emission. Trivalent lanthanide doped wide-bandgap semiconducting oxide nanostructures are promising active materials in opto-electronic devices. In this work we report on the electrochemical deposition (ECD) of Eu-doped ZnO (ZnO:Eu) nanowire arrays on glass substrates coated with F-doped polycrystalline SnO2. The structural, chemical and optical properties of ZnO:Eu nanowires have been systematically characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and photoluminescence. XRD results suggest the substitution of Zn2+ by Eu ions in the crystalline lattice. High-resolution TEM and associated electron diffraction studies indicate an interplanar spacing of 0.52 nm which corresponds to the (0 0 0 1) crystal plane of the hexagonal ZnO, and a growth along the c-direction. The ZnO:Eu nanowires have a single crystal structure, without noticeable defects. According to EDX, SIMS and XPS studies, cationic Eu species are detected in these samples showing the incorporation of Eu into the ZnO matrix. The oxidation states of europium ions in the nanowires are determined as +3 (74%) and +2 (26%). Photoluminescence studies demonstrated red emission from the Eu-doped ZnO nanowire arrays. When Eu was incorporated during the nanowire growth, the sharp 5D07F2 transition of the Eu3+ ion at around 612 nm was observed. These results suggest that Eu doped ZnO nanowires could pave the way for efficient, multispectral LEDs and optical devices.