English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The speed of FtsZ treadmilling is tightly regulated by membrane binding

MPS-Authors
/persons/resource/persons215956

Garcia-Soriano,  Daniela A.
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons231694

Heermann,  Tamara
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons123079

Raso,  Ana
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons15815

Schwille,  Petra
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
Fulltext (public)

s41598-020-67224-x.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Garcia-Soriano, D. A., Heermann, T., Raso, A., Rivas, G., & Schwille, P. (2020). The speed of FtsZ treadmilling is tightly regulated by membrane binding. Scientific Reports, 10(1): 10447. doi:10.1038/s41598-020-67224-x.


Cite as: http://hdl.handle.net/21.11116/0000-0006-C998-C
Abstract
As one of the key elements in bacterial cell division, the cytoskeletal protein FtsZ appears to be highly involved in circumferential treadmilling along the inner membrane, yielding circular vortices when transferred to flat membranes. However, it remains unclear how a membrane-targeted protein can produce these dynamics. Here, we dissect the roles of membrane binding, GTPase activity, and the unstructured C-terminal linker on the treadmilling of a chimera FtsZ protein through in vitro reconstitution of different FtsZ-YFP-mts variants on supported membranes. In summary, our results suggest substantial robustness of dynamic vortex formation, where only significant mutations, resulting in abolished membrane binding or compromised lateral interactions, are detrimental for the generation of treadmilling rings. In addition to GTPase activity, which directly affects treadmilling dynamics, we found a striking correlation of membrane binding with treadmilling speed as a result of changing the MTS on our chimera proteins. This discovery leads to the hypothesis that the in vivo existence of two alternative tether proteins for FtsZ could be a mechanism for controlling FtsZ treadmilling.