English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Engineering light‐responsive contractile actomyosin networks with DNA nanotechnology

MPS-Authors
/persons/resource/persons232747

Jahnke,  Kevin
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons140010

Weiss,  Marian
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons249566

Weber,  Cornelia
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons84351

Platzman,  Ilia
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons220391

Göpfrich,  Kerstin
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
Citation

Jahnke, K., Weiss, M., Weber, C., Platzman, I., Göpfrich, K., & Spatz, J. P. (2020). Engineering light‐responsive contractile actomyosin networks with DNA nanotechnology. Advanced Biosystems, 4(9): 2000102, pp. 1-9. doi:10.1002/adbi.202000102.


Cite as: http://hdl.handle.net/21.11116/0000-0006-CEC6-3
Abstract
External control and precise manipulation is key for the bottom‐up engineering of complex synthetic cells. Minimal actomyosin networks have been reconstituted into synthetic cells; however, their light‐triggered symmetry breaking contraction has not yet been demonstrated. Here, light‐activated directional contractility of a minimal synthetic actomyosin network inside microfluidic cell‐sized compartments is engineered. Actin filaments, heavy‐meromyosin‐coated beads, and caged ATP are co‐encapsulated into water‐in‐oil droplets. ATP is released upon illumination, leading to a myosin‐generated force which results in a motion of the beads along the filaments and hence a contraction of the network. Symmetry breaking is achieved using DNA nanotechnology to establish a link between the network and the compartment periphery. It is demonstrated that the DNA‐linked actin filaments contract to one side of the compartment forming actin asters and quantify the dynamics of this process. This work exemplifies that an engineering approach to bottom‐up synthetic biology, combining biological and artificial elements, can circumvent challenges related to active multi‐component systems and thereby greatly enrich the complexity of synthetic cellular systems.