English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Improving Local Trajectory Optimisation using Probabilistic Movement Primitives

MPS-Authors
/persons/resource/persons202663

Gomez-Gonzales,  S.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Shyam, R. A., Lightbody, P., Das, G., Liu, P., Gomez-Gonzales, S., & Neumann, G. (2019). Improving Local Trajectory Optimisation using Probabilistic Movement Primitives. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019) (pp. 2666-2671). Piscataway, NJ: IEEE. doi:10.1109/IROS40897.2019.8967980.


Cite as: https://hdl.handle.net/21.11116/0000-0006-D7B2-E
Abstract
There is no abstract available