English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Silicon−Hydrogen Exchange Reaction: A Catalytic σ‑Bond Metathesis Approach to the Enantioselective Synthesis of Enol Silanes

MPS-Authors

Zhou,  Hui
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons199547

Bae,  Han Yong
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132873

Leutzsch,  Markus
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons219934

Kennemur,  Jennifer L.
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons249848

Bécart,  Diane
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhou, H., Bae, H. Y., Leutzsch, M., Kennemur, J. L., Bécart, D., & List, B. (2020). The Silicon−Hydrogen Exchange Reaction: A Catalytic σ‑Bond Metathesis Approach to the Enantioselective Synthesis of Enol Silanes. Journal of the American Chemical Society, 142(32), 13695-13670. doi:10.1021/jacs.0c06677.


Cite as: http://hdl.handle.net/21.11116/0000-0006-DAFF-6
Abstract
The use of chiral enol silanes in fundamental transformations such as Mukaiyama aldol, Michael, and Mannich reactions as well as Saegusa–Ito dehydrogenations has enabled the chemical synthesis of enantiopure natural products and valuable pharmaceuticals. However, accessing these intermediates in high enantiopurity has generally required the use of either stoichiometric chiral precursors or stoichiometric chiral reagents. We now describe a catalytic approach in which strongly acidic and confined imidodiphosphorimidates (IDPi) catalyze highly enantioselective interconversions of ketones and enol silanes. These “silicon–hydrogen exchange reactions” enable access to enantiopure enol silanes via tautomerizing σ-bond metatheses, either in a deprotosilylative desymmetrization of ketones with allyl silanes as the silicon source or in a protodesilylative kinetic resolution of racemic enol silanes with a carboxylic acid as the silyl acceptor.