English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning

MPS-Authors
/persons/resource/persons238702

Khadiv,  Majid
Research Group Movement Generation and Control, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons232844

Zhu,  Jia-Jie
Max Planck Research Group Autonomous Learning, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons85125

Righetti,  Ludovic
Research Group Movement Generation and Control, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yeganegi, M. H., Khadiv, M., Moosavian, S. A. A., Zhu, J.-J., Del Prete, A., & Righetti, L. (2019). Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning. In 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids 2019) (pp. 170-177). Piscataway, NJ: IEEE. doi:10.1109/Humanoids43949.2019.9035003.


Cite as: https://hdl.handle.net/21.11116/0000-0006-FA9B-2
Abstract
There is no abstract available