English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Rapid pre-saturated TFL transmit field mapping with an optimized 3D centric single-shot readout

MPS-Authors
/persons/resource/persons215985

Bosch,  D
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192600

Bause,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214560

Zaiss,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bosch, D., Bause, J., Ehses, P., Zaiss, M., & Scheffler, K. (2020). Rapid pre-saturated TFL transmit field mapping with an optimized 3D centric single-shot readout. Poster presented at 2020 ISMRM & SMRT Virtual Conference & Exhibition.


Cite as: http://hdl.handle.net/21.11116/0000-0006-D89D-6
Abstract
Robust and fast measurements of the transmit field strength is of great importance particularly in parallel transmit applications at ultra-high field. In this work, a pre-saturation TurboFLASH B1+ mapping sequence was optimized for 3-dimensional single-shot acquisition with spiral-centric reordering. Improved SNR and reduced artifacts were achieved by using a variable flip-angle readout. The ability of the proposed sampling scheme to perform fast whole-brain B1+ mapping with low SAR was demonstrated in phantom and in-vivo experiments at 9.4 T. The obtained B1+ maps were comparable to those obtained with the conventional 2D-SatTFL approach but required significantly less scan time.