English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Coordinating Sulfur Pools under Sulfate Deprivation

MPS-Authors
/persons/resource/persons198374

Aarabi,  F.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons208310

Naake,  T.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97147

Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97197

Hoefgen,  R.
Amino Acid and Sulfur Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Aarabi, F., Naake, T., Fernie, A. R., & Hoefgen, R. (2020). Coordinating Sulfur Pools under Sulfate Deprivation. Trends in Plant Science, 25(12), 1227-1239. Retrieved from http://www.sciencedirect.com/science/article/pii/S1360138520302181.


Cite as: http://hdl.handle.net/21.11116/0000-0007-85E0-5
Abstract
Plants display manifold metabolic changes on sulfate deficiency (S deficiency) with all sulfur-containing pools of primary and secondary metabolism affected. O-Acetylserine (OAS), whose levels are rapidly altered on S deficiency, is correlated tightly with novel regulators of plant sulfur metabolism that have key roles in balancing plant sulfur pools, including the Sulfur Deficiency Induced genes (SDI1 and SDI2), More Sulfur Accumulation1 (MSA1), and GGCT2;1. Despite the importance of OAS in the coordination of S pools under stress, mechanisms of OAS perception and signaling have remained elusive. Here, we put particular focus on the general OAS-responsive genes but also elaborate on the specific roles of SDI1 and SDI2 genes, which downregulate the glucosinolate (GSL) pool size. We also highlight the key open questions in sulfur partitioning.