English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Increasing Complexity Approach to the Fundamental Surface and Interface Chemistry on SOFC Anode Materials

MPS-Authors
/persons/resource/persons230432

Götsch,  Thomas
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogeneous Reactions, Max PlanckInstitute for Chemical Energy Conversion;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

acs.accounts.0c00218.pdf
(Publisher version), 8MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Penner, S., Götsch, T., & Klötze, B. (2020). Increasing Complexity Approach to the Fundamental Surface and Interface Chemistry on SOFC Anode Materials. Accounts of Chemical Research, 53(9), 1811-1821. doi:10.1021/acs.accounts.0c00218?ref=pdf.


Cite as: https://hdl.handle.net/21.11116/0000-0006-DF5E-7
Abstract
In this Account, we demonstrate an increasing complexity approach to gain insight into the principal aspects of the surface and interface chemistry and catalysis of solid oxide fuel cell (SOFC) anode and electrolyte materials based on selected oxide, intermetallic, and metal–oxide systems at different levels of material complexity, as well as into the fundamental microkinetic reaction steps and intermediates at catalytically active surface and interface sites. To dismantle the complexity, we highlight our deconstructing step-by-step approach, which allows one to deduce synergistic properties of complex composite materials from the individual surface catalytic properties of the single constituents, representing the lowest complexity level: pure oxides and pure metallic materials. Upon mixing and doping the latter, directly leading to formation of intermetallic compounds/alloys in the case of metals and oxygen ion conductors/mixed ionic and electronic conductors for oxides, a second complexity level is reached. Finally, the introduction of an (inter)metall(ic)–(mixed) oxide interface leads to the third complexity level. A shell-like model featuring three levels of complexity with the unveiled surface and interface chemistry at its core evolves. As the shift to increased complexity decreases the number of different materials, the interconnections between the studied materials become more convoluted, but the resulting picture of surface chemistry becomes clearer. The materials featured in our investigations are all either already used technologically important or prospective components of SOFCs (such as yttria-stabilized zirconia, perovskites, or Ni–Cu alloys) or their basic constituents (e.g., ZrO2), or they are formed by reactions of other compounds (for instance, pyrochlores are thought to be formed at the YSZ/perovskite phase boundary). We elaborate three representative case studies based on ZrO2, Y2O3, and Y-doped ZrO2 in detail from all three complexity levels. By interconnection of results, we are able to derive common principles of the influence of surface and interface chemistry on the catalytic operation of SOFC anode materials. In situ measurements of the reactivity of water and carbon surface species on ZrO2- and Y2O3-based materials represent levels 1 and 2. The highest degree of complexity at level 3 is exemplified by combined surface science and catalytic studies of metal–oxide systems, oxidatively derived from intermetallic Cu–Zr and Pd–Zr compounds and featuring a large number of phases and interfaces. We show that only by appreciating insight into the basic building blocks of the catalyst materials at lower levels, a full understanding of the catalytic operation of the most complex materials at the highest level is possible.