Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Iso-entangled mutually unbiased bases, symmetric quantum measurements and mixed-state designs

MPG-Autoren

Grassl,  Markus
Guests, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1906.12291.pdf
(Preprint), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Czartowski, J., Goyeneche, D., Grassl, M., & Życzkowski, K. (2020). Iso-entangled mutually unbiased bases, symmetric quantum measurements and mixed-state designs. Physical Review Letters, 124(09): 090503. doi:10.1103/PhysRevLett.124.090503.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-DF68-B
Zusammenfassung
Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem whether a complete set
of five iso-entangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matrices of these 20 pure states forming this generalized quantum measurement form a regular dodecahedron inscribed in a sphere of radius sqrt{3/20} located inside the Bloch ball of radius 1/2. Such a set forms a mixed-state
2-design --- a discrete set of quantum states with the property that the mean value of any quadratic function of density matrices is equal to the integral over the entire set of mixed states with respect to the flat Hilbert-Schmidt measure. We establish necessary and sufficient conditions mixed-state designs
need to satisfy and present general methods to construct them. Furthermore, it is shown that partial traces of a projective design in a composite Hilbert
space form a mixed-state design, while decoherence of elements of a projective design yields a design in the classical probability simplex. We identify a distinguished two-qubit orthogonal basis such that four reduced states are evenly distributed inside the Bloch ball and form a mixed-state 2-design.